High-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus and characterization of its interaction with the bifunctional HPr kinase/phosphorylase.

نویسندگان

  • Till Maurer
  • Sebastian Meier
  • Norman Kachel
  • Claudia Elisabeth Munte
  • Sonja Hasenbein
  • Brigitte Koch
  • Wolfgang Hengstenberg
  • Hans Robert Kalbitzer
چکیده

A high-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus was obtained by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy on the basis of 1,766 structural restraints. Twenty-three hydrogen bonds in HPr could be directly detected by polarization transfer from the amide nitrogen to the carbonyl carbon involved in the hydrogen bond. Differential line broadening was used to characterize the interaction of HPr with the HPr kinase/phosphorylase (HPrK/P) of Staphylococcus xylosus, which is responsible for phosphorylation-dephosphorylation of the hydroxyl group of the regulatory serine residue at position 46. The dissociation constant Kd was determined to be 0.10 +/- 0.02 mM at 303 K from the NMR data, assuming independent binding. The data are consistent with a stoichiometry of 1 HPr molecule per HPrK/P monomer in solution. Using transversal relaxation optimized spectroscopy-heteronuclear single quantum correlation, we mapped the interaction site of the two proteins in the 330-kDa complex. As expected, it covers the region around Ser46 and the small helix b following this residue. In addition, HPrK/P also binds to the second phosphorylation site of HPr at position 15. This interaction may be essential for the recognition of the phosphorylation state of His15 and the phosphorylation-dependent regulation of the kinase/phosphorylase activity. In accordance with this observation, the recently published X-ray structure of the HPr/HPrK core protein complex from Lactobacillus casei shows interactions with the two phosphorylation sites. However, the NMR data also suggest differences for the full-length protein from S. xylosus: there are no indications for an interaction with the residues preceding the regulatory Ser46 residue (Thr41 to Lys45) in the protein of S. xylosus. In contrast, it seems to interact with the C-terminal helix of HPr in solution, an interaction which is not observed for the complex of HPr with the core of HPrK/P of L. casei in crystals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

X-ray structure of a bifunctional protein kinase in complex with its protein substrate HPr.

HPr kinase/phosphorylase (HprK/P) controls the phosphorylation state of the phosphocarrier protein HPr and regulates the utilization of carbon sources by Gram-positive bacteria. It catalyzes both the ATP-dependent phosphorylation of Ser-46 of HPr and its dephosphorylation by phosphorolysis. The latter reaction uses inorganic phosphate as substrate and produces pyrophosphate. We present here two...

متن کامل

Refined structures of the active Ser83-->Cys and impaired Ser46-->Asp histidine-containing phosphocarrier proteins.

BACKGROUND The histidine-containing phosphocarrier protein (HPr) functions in the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS). His15 on HPr accepts a phosphoryl group from Enzyme I and transfers it to the Enzyme IIA domain of a sugar-specific PTS permease. In addition, HPrs from Gram-positive bacteria undergo phosphorylation on a serine residue, Ser46, which inhibits pho...

متن کامل

Topography of the interaction of HPr(Ser) kinase with HPr.

The phosphocarrier protein, HPr, from Gram-positive organisms and mycoplasmas is a substrate for an ATP-dependent kinase that phosphorylates serine 46. In Gram-negative organisms, the corresponding HPr is not phosphorylated on serine 46 and the ATP-dependent kinase is absent. To determine the specificity requirements for phosphorylation of Mycoplasma capricolum HPr, a chimera in which residues ...

متن کامل

The 1.9 A resolution structure of phospho-serine 46 HPr from Enterococcus faecalis.

The histidine-containing phosphocarrier protein HPr is a central component of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), which transfers metabolic carbohydrates across the cell membrane in many bacterial species. In Gram-positive bacteria, phosphorylation of HPr at conserved serine 46 (P-Ser-HPr) plays several regulatory roles within the cell; the major regulatory effect of ...

متن کامل

HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli.

The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) is a multicomponent system that participates in a variety of physiological processes in addition to the phosphorylation-coupled transport of numerous sugars. In Escherichia coli and other enteric bacteria, enzyme IIA(Glc) (EIIA(Glc)) is known as the central processing unit of carbon metabolism and plays multiple roles, incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 17  شماره 

صفحات  -

تاریخ انتشار 2004